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A

On the Use and Misuse
of Chi-Square

Kevin L. Delucchi
Developmental Studies Center, San Ramon, California

One of the most useful tools available to any data analyst—especially one who
deals with social science data—is Pearson’s statistic known as chi-square. Its
usefulness stems primarily from the fact that much of the data collected by social
scientists is categorical in nature—whether ordered or unordered. Not only are
vanables such as sex, school, ethnicity, and experimental group categorical, but
one can argue that many other measures are best, that is, conservatively, ana-
lyzed by being treated as categorical variables. This would include. for example,
the ubiquitous Likert-type item often found in questionnaires and other mea-
sures.

As well as being applicable in many common analysis situations, the chi-
square statistic 1s also quite widely known, relatively easy to compute. and
available on most computer packages of statistical software. Like the good-
natured nextdoor neighbor who always lends a hand without complaining, how-
cver, the chi-square statistic is easy to take for granted and easy to misuse.

The title of this chapter comes from a 1949 landmark article by Lewis and
Burke entitled “The Use and Misuse of the Chi-Square Test,” which appeared in
Psychological Bulletin. The purpose of their article was to counteract the im-
proper use of this statistic by researchers in the behavioral sciences. It addressed
nine major sources of error, cited examples from the literature to illustrate these
points, and caused a stir among practicing researchers. The Lewis and Burke
paper was followed by several responses (Edwards, 1950; Pastore, 1950; Peters.
1950) and a rejoinder by Lewis and Burke (1950).

Since then, use of the chi-square statistic among social scientists has in-
creased, a great deal of research has been conducted on its behavior under a
variety of conditions, and several methods have been developed to handle some
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of the problems cited by Lewis and Burke. Several years ago | reviewed develop-
ments since Lewis and Burke’s original paper (Delucchi, 1983). In this chapter, 1
provide a further update, reviewing those common errors, providing examples of
some of them, and discussing supplementary and complementary procedures for
the analysis of data commonly analyzed with Pearson's chi-square statistic.

THE USE OF CHI-SQUARE

To begin, let me remind the reader that there is a distinction between Pearson's
chi-square statistic (Pearson, 1900) and the chi-square distribution. The former is
a number calculated from data. which is compared to the latter, a family of
theoretical distributions defined by their degrees of freedom. Unjess stated other-
wise, the phrase chi-square refers here to the computed statistic, symbolized by
X2, as opposed to the Greek letter chi (x), which is used to denote the distribu-
tion,

As originally proposed by Pearson, the statistic is based on comparing the
observed frequencies in a contingency table with those frequencies that would be
expected under the hypothesis of no association when testing for independence
between two variables in the single sample model, or with those expected under
the hypothesis of homogeneity of distributions in the multiple sample mode!.

Table 10.1 iflustrates the case ofa2 x3 contingency table.! In this example
we have the responses of 79 teachers from two groups of schaols. Teachers at one
group of schools are involved in an educational intervention, whereas those in
the other school are serving as a contro} group. As part of an effort to determine
the effects of the intervention on the teachers’ perceptions of school climate, the
teachers filled out a questionnaire that included a section asking them to indicate
how typical a series of descriptions were of their school. The item used in Table
10.1 read, ““The principal determines the educational program and philosophy.™”
Their responses were classified tnto one of three categories: not typical, some-
what typical, and typical. We wish to know if there is evidence that teachers from
the two groups view this aspect of school climate differently. Pearson’s statistic is
defined as:

I
lf, — ECf)P2
x3=2 3 Y EU)P 0
i=1 4= E(ﬁj)

—_—

'These data. as are most of the other examples in this chapter, were collected as part of the
evaluation of the Child Developmient Project (CDP), a multiyear demonstraiion program that is
attempting to promote the prosocial development of elementary-age children. Interested readers are
referred to Solomon, Watson, Delucchi, Schaps. and Bartistich (1988) and Watson, Solomon, Bat-
tistich, Schaps, and Solomon (1989) for additional information.
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TABLE 10.1 '
Contingency Table of School by Principal’s Perceived Role

PDETER _
SCHOOL by Principal determines the educational

program and philosophy

Count
not .
typical somewhat typical Row
1 2 3 Total
SCHOOL
24 45
Control 1 7 14 o
6 34
Program 2 12 16 g
Column 19 30 30 1;3 o
Tota! 241 38.0 38.0 X
Chi-Square Value DF Significance
i-Squ
.00423
Pearson 10.92937 ; poees
Likelihood Ratio 11.49290

Minimum Expected Frequency—8.177

Where:

! = number of rows
J = number of columns
v = degrees of freedom
=(-NDJ -1
observed frequency in ith row, jth column

fy =
F(f..; = expected value of the observed frequency
-4 i
_ (FO(F,)
F.

Computing the expected values gives us the following:
X2y a0 = 17 = 10.8)2 + (14 = 17.1)2 + (24 — 17.1)2
2=

(12 = 8.2)2 + (16 — 12.992 + (6 — 12.9)?]
108 + 17.1 + 17.1 + 82 + 129 + 12.9

_ B63.42
= 2

=109,
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which we then compare to a tabled v
hich w alue for o = .05 i
distribution with two degrees of freedom, y2 = o e o

5.99. 0 i
greater than the tabled value. so we have evidence eyt

er than t to reject the hypothesis
study, which is the null hypothesis of no group differences. pofhesis inder

The Misuse of Chi-Square

wis and Burke centered their 1949 article around nine principle sources of

erTor [hey fOUnd in thei ey
1ew of pUl)IISI ed researcl [ 108¢ nine sources in the
B
order LC\\IS and BUlkC llSth themr , are:

1. lack of i i
f independence among single events or measures:

2. small theoretical frequencies:;
3. neglect of frequencies of non-occurrence:
4.

failure to equalize the sum of the obs
theoretical frequencies:

indeterminant theoretical frequencies;

5

6. incorrect or questionable categorizing:
7. use of nonfrequency data:
8
9

erved frequencies and the sum of the

; .
lncorrccl determination of the number of degrees of freedom: and
Incorrect computations.

resul i 1
o :]:n;i“hc.he'ck the integrity of your data all the way back to the original raw
- Ihis s especially important in small-s c
' . : s -sample data sets wh d
point carries substantial weight in the final results o cach data
The seventh error, the use of nonfre

: quency data, is also an ¢ i
often encountered in the current researc , e e

h literature. This is probably the result of
ONg practitioners and journal reviewers.
to AEquatlon I must be frequencies, not
at is not a count.

in their list, Jack of independence among
: they found most fre i ir bri
el ‘ . s quently in their brief
mbavtv)loftimclcs tha} used the chi-square statistic to analyze data. This is also
ﬁwor t.y | € most !lke]y cause of the fifth source of misuse indetenninz;nt
theoretical frequencies, which they noted, “commonly arises from a lack of
independence between measures™ (p. 478). ‘ °

percentages, means, or any number th
. Lewis and Burke cited the first error
single events or measures, as the error
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It is interesting to note that one of the examples Lewis and Burke used to
illustrate this error, in which a set of die are thrown repeatediy. is actually a poor.
if not incorrect, example (Pastore, 1950).

One of the basic assumptions under which the statistic is derived is that of
independence of the data. Just as one should not compute a two-sample ¢ test on
matched-pair data, so also one must not compute Pearson’s chi-square on depen-
dent measures. This is true regardless of what produces the interdependence;
repeated measurement of the same person, sample matching. or correlation in-
herent in the subjects themselves such as data from spouses. siblings. parent and
child combinations. and so on. The proper statistic for correlated data is

McNemars's measure in the 2 X 2 table, and either Styarts or Bowker’s test in

the K x K table (Marascuilo & McSweeny, 1977).

Small Theoretical Frequencies

Lewis and Burke (1949) labeled the second error in theur list. the use of expected
frequencies that are too small, as the most common weakness in the use of chi-
square (p. 460). Thev took the position that expected values of 5 were probably
too low and stated a preference for a minimum expected value of f0, with S as
the absolute lowest limit. As examples they cited two published studies that used
chi-square tests with expected values below 10. It appears today that their posi-
tion, a popular one among researchers, may be overly conservative.

This problem of small expected values has been examined from the perspec-
tives of two different applications. In testing goodness-of-fit hypotheses, the
categories are chosen arbitrarily, permitting control over the size of the expected
values by choice of category sizes. In contrast, the categories of contingency
tables used for testing association hypotheses are relatively fixed. and one is
forced to increase the expected values by increasing the sample size and/or
collapsing rows and/or columns. Research taken from the perspective of this
latter case are considered first.

Tests of Association Hypotheses in Contingency Tables. Based on Monte
Carlo and empirical studies, recommendations with respect to minimum ex-
pected cell frequencies in testing hypotheses of association have included recom-
mended minimum values of 1 (Jeffreys, 1961; Kempthome, 1966; Slakter,
1965), 5 (Fisher, 1938), 10 (Cramer, 1946), and 20 (Kendall, 1952). Cochran
(1952) first proposed the oft-cited rule-of-thumb that chi-square may be applied
if no more than 20% of the cells have expected values between one and five.
Wise (1963) suggested that small (i.e., less than five) but equal expected fre-
quencies were preferable to unequal frequencies where a few expected values are
small, and the remaining frequencies are well above most criteria. Good, Grover,

and Mitchell (1970 ay be

as low as 0.33 (p. 275).
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This view of the statistic as being robust with respect to minimum expected
values is also supported by the findings of Lewontin and Felsenstein (1965), who
used Monte Carlo methods to examine 2 X N tables with fixed marginals. With
small expected values in each cell and degrees of freedom greater than five, they
concluded that the test tends to be conservative. v ted
values below one generally does notinvali afe the procedure. Bradely, Bradely,
McGrath, and Cutcomb (1979) conducted a series of sampling experiments to
examine the Type I error rates of chi-square in the presence of small expected
values in tables as large as 4 x 4. Their results offer strong support for the
robustness of the statistic in meeting preassigned Type I ervor rates. Additional
support comes from Camilli and Hopkins (1978) study of chi-square in 2 X 2
tables. They found that expected va low a Or two were acceptable
when the total sample size was greater than 20.

Testing Goodness-of-Fit Hypotheses.  In testing goodness-of~fit hypotheses,
Kendall and Stuart (1969), following suggestions by Mann and Wald (1942) and
Gumbel (1943), recommended that onc choosc the boundaries of categories so
that each has an expected frequency equal to the reciprocal of the number of
categories. They preferred a minimum value of five categories. Slakter (1965,
1966), Good (1961), and Wise (1963) found that in testing goodness of fit,
expected values may be as low as one or twmmSWpected
values are equal. For unequal expected values or an alpha of 0[, the expected
frequencies should be at least four.

Yarnold (1970) numericaily examined the accuracy of the approximation of
the chi-square goodness-of-fit statistic. He proposed that “if the number of
classes, s. is three or more, and if r denotes the number of expectations less than
five, then the minimum expectation may be as small as 5r/s" (p. 865). He
concluded that “the upper one and five percentage points of the X2 approximation
can be used with much smaller expectations than previously considered possible™
{p. 882).

After considering earlier work, Roscoe and Byars (1971) concluded that one
should be concerned primarily with the average expected value when considering
the goodness-of-fit statistic with more than onc degree of freedom. In the case of
qual expected cell frequencies, they suggested an average value of 2 or more Tor
an alpha equal to .05 and 4 or more for an alpha equal to D17 [n the nonuniform
case, they recommend average expected values of 6 and 10, respectively. y
urged the use of this average-expecied-value FalcTn the test for independence as
well, even when the sample sizes are not equal. As Horn (1977) noted, this
average-expected-value rule is in agreement with Slakter’s (1965, 1966) sugges-
tion that what may be most important is the average of the expected frequencies

and also subsumes Cochran’s rule that 20% of the expected frequencies should be
greater than one.

Summarizing this work on minimum expected values for both association and
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goodness-of-fit hypotheses, as a general rule, the chi-square statistic mgy tlx:
properly used in cases where the expected values are much lower than previously
considered permissible. In the presence of small expected values.' the statnstlchls
quite robust with respect to controlling Type I error rate, especially under‘ tbe
following conditions: (a) the total N is at [east five times the number of cells; ( 3
the average expected value is five or more; (¢) the expected values tcnddmwarl
homogeneity; and (d) the distribution of the margins is not skewed. Ad itiona
references on this matter that may be of interest to readers can be found mn
1 79).

Hu;:c:rlrr]riggt gl)il?a‘)ations. Cochran’s rule, which states that all expected‘values be
greater than one and not more than 20% be less than ﬁvel, offers a ffm ba_lance
between practicality and precision. An alternative to consider, especially m-the
case of small or sparse tables, is the computation of an exact test (Agresti &
Wackerly, 1977, Baker, 1977; Mehat & Patel, 1980; Mehat and Patel, 1983;
Mehat, Patel. & Gray, 1985). In recent years, these procedures have becqme
more accessible due to the availability of increased computer power and efficient
algorithms. A comprehensive implementation can be found in the Smm}c‘{ soft-
ware (Cytel Software, 1991). In spite of its name, however, the use of an cxavc!
test” is not without controversy. As is discussed in a later SC.Ctl(.)n. dcbate‘ sﬂ
continues over the appropriate use of both exact tests and continuity corrections
Berkson (1978), Kempthorne (19793, Upton (1982) and D'Agostino, Chase. and
Belanger (1988) offered the opposition to its use in 2 X 2 tables.

Power Considerations. An important point that is easily ovelrlooked con-
cemns the effect of small expected values on the power of thg chl-square test.
Overall (1980) examined the effect of low expected frequencmlts in one row or
column of a 2 X 2 design on the power of the chi-square S[aTlStIC..(ThlS most
often results from the analysis of infrequently occurring events). Setting (1 — o)
= .70 as a minimally acceptable level, Overall concluded that when expected
values are quite low, the power of the chi-square test drops to a level that
produces a statistic that, in his view, is almost useless because low power means
the nability to detect an existing difference. S .

Specific advice as to the selection of sample size 1s difficult to Provnde as’th‘e
requirements and standards of researchers vary. In general, fgﬂmggﬁonhmnl 5
rule will provide sufficient power in most cases. Tables for computing power in
the use of chi-square are given in Cohen (1988, chap. 7). The point here is to
remind the reader that Type Il error rates go up as sample size goes down.

Neglect of Frequencies of Nonoccurrence

Omitting frequencies of nonoccurrence from contingency tables is a surprisingly
easy emor to make, and cxamples can still occasionally be found. Consndfir. for
example, the case of some of the early work on the detection of item bias. In
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1979, Scheuneman proposed a method of detecting potentially biased items in an
otherwise unbiased test analogous to the more demanding item-response theory
approach by categorizing test-takers based on the total test score to equate for
ability differences. To test an item for evidence of bias against some subgroup
based on, say. sex or ethnicity of the test-taker. she proposed classifying each
person in the sample on three dimensions: their group membership. total test
score, and whether or not they passed the item.

But the contingency table she formed for calculating chi-square on was not
this three-dimensional table, but rather a two-dimensional table defined by total-
score grouping and group membership—counting only the numbers of each
group that passed the item in question. As noted by several critics (Baker, 1981;
Marascuilo & Slaughter, 1981). the resulting statistic is not distributed as chi-
square because she neglected to count the frequency of the group members who
did not pass the item. For an example of the statistically correct approach the
reader is referred to Zwick and Ericikan (1989).

By neglecting the frequencies of nonoccurrence one usually commits the
fourth error, failure to equalize the sum of the observed frequencigs and the sum_
of thg_AtheoretiCmgﬁ]_ﬁjc?ﬁ"c'jé_sv.ﬂ;\hl’t‘hvb‘ifghdrelatively rare, this will result directly
from the error discussed ééfiier—ncglecting the frequency of nonoccurrence.
One quick check of the validity of a contingency table for computing chi-square
1s to see 1f the sum of the observed frequencies is equal to the sum of the
expected. If they are not equal. something is wrong.

incorrect or Questionable Categorizing

This problem, more an issue of methodology than of mathematical statistics, is
found in situations where the data need to be categorized in some arbitrary form
in the absence of naturally occurring categories such as group membership. The
distribution of frequencies within a set of categories is at the heart of the statistic,
so the selection of those categories obviously will have a great deal of influence
on the obtained value. The conservative data analyst will define categories before

. collecting data (preferably as a result of collecting and analyzing pilot data). The

categories should be mutually exclusive so that each outcome belongs in one.
and only one, category, and they must be as well-defined as possible so that there
15 no question about what constitutes membership in a given category. The
categories themselves should cover the full range of possible responses, yet not
be so narrowly defined that the resulting frequencies produce very low expected
vajues.

While on this subject of classification, a comment on the matter of mis-
classification is appropriate. One issue of categorical analysis that has received
little attention in social science research is the effect of misclassification on the
power and Type 1 error rate of the chi-square test. Most of the relevant literature
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is found in the biostatistics literature (e.g., Mote & Anderson, 1965). One
exception to this in the area of educational research is an article by Katz and
McSweeny (1979), who discussed the effects of classification errors on the
significance level and power of the test for equality or proportions. They deygl-
oped and discussed a correction procedure based on estimates of the probabulity
of false negatives and false positives and noted that the detrimental effects (?f
misclassification can be marked, including a loss in power. This problem is
especiaily likely to occur when one of the proportions being tested is small, and
the probability of misclassification is not equivalent across groups. Any re-
searcher who suspects the presence of misclassified data should consult the K‘alz
and McSweeny (1979) article and the references they cited. The key to using
their procedure. and its major drawback, is the need for estimates of the rate of
misclassification that often may be unobtainable.

Correction for Continuity

As part of their discussion on the proper use of the chi-square statistic, Lewis and
Burke presented the Yates correction for continuity, noting that it is justified only
in the case of a 2 X 2 table. Since the time of their writing, questions have arisen
regarding the appropriateness of the use of a correction for continuity. .

Categorical variables are discrete and the chi-square distribution 1§ con-
tinuous. thus a correction to improve the approximation can be made. The most
well-known correction was proposed by Yates (1934) and is formed by adding or
subtracting } to each observed frequency so as to move the observed value closer
to the expected value. Thus it becomes more difficult to reject the hypothesis
being tested. Symbolically, the corrected chi-square, X2, is written as

o g gl

i=1 =1

(3)

The analytical derivation of the correction expressed in Equation 3 is given by
Cox (1970). .
The disagreement over the use of this correction is based not on its theoretical
grounding but on its applicability. Plackett {1964), confirming empirical results
of Pearson (1947), argued that the correction is inappropriate if the data come
from independent binomial samples. Grizzie (1967) extended Plackett’s results

to the general case and concluded that the comection is_sQ conservative as 1o
render it useless for practical purposes.

The consensus of several investigators (Camilli & Hopkins, 1978; Conover,
1974a, 1974b; D'Agostino, Chase, & Belanger, 1988; Mantel, 1974; Mantel &
Greenbouse, 1968; Miettinin, 1974, Starmer, Grzzle, & Sen, 1974; Upton,
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1982) is that the correction for continuity becomes overly conservative when
either or both of the marginals in a table are random. As this is often the case in
social science research, the use of the correction should not be given the blanket
recommendation that often accompanies it.

These critics are not without critics of their own. In a paper read to the Royal
Statistical Society, Yates (1984, followed by comments from several noteworthy
statisticians) held that the correction for continuity is misunderstood due to strict
adherence to Neyman—Pearson critical levels. the use of strict nominal levels and
arefusal by investigators to accept his arguments for conditioning on the margin-
als. In any event. as a couple of the discussants following Yates noted, even the
simple 2 % 2 table contains a great deal of potential information and the analysis
of even such a simple case cannot be taken lightly.

So the debate continues after 50 years. If_girong conservatism 1s desired
and/or the margina) totals in the contingcncyﬁm
values, then i uld be_applied. In all other cases. however,
one mus be cauttous in its use because the correction for continuity will produce
Very conservative probability estimates.

Having reviewed common sources of misuse, et us move on to supplemcn-

tary and alternative procedures that can aid in the exploration of data appropriate
to a chi-square—based analysis.

SUPPLEMENTARY
AND ALTERNATIVE PROCEDURES

Whereas a properly executed chi-square statistic may well be a thing of beauty to
behold—at least to some of us—in many ways it is only the simplest of forms of
statistical analysis. There ar, t i comings to its use: (a) it is

an omnibus test, (b) it does not necessarily utilize all of the informatiof ava; able
in a contingency table such as mﬁmm:ﬁ%Eancc
level is function of sample size. So by itself a significant chi-square
statiﬁMmation contained in the table. The
researcher should keep in mind several procedures that supplement or serve as an
alternative to a chi-square test. A comprehensive treatment of these and other
methods may be found in Agresti (1990),

One way to understand why a contingency table produces a statistically signif-
icant test statistic is (0 examine the cel| entries expressed as more than just
counts. Table 10.2 is a table produced by SPSSX from the data shown in Table
10.1. The difference in these two tables results from the information requested of
the software.

In addition to cell counts, Table 10.2 displays the cell information in terms
of each cell’s expected value, its count as a percentage of the row, column, and
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TABLE 10.2
Expanded Display of Table 10.1

SCHOOL by PDETER

Principal determines the educationa/
program and philosophy

Count i
Exp Val l
Row Pct
Col Pct
Tot Pct
Residual not
Std Res typical somewhat typical Row
Adj Res 1 2 3 Totat
seroot 1 l 7 14 24 45
Control { 10.8 171 171 57.0%
' 15.6% 31.1% 53.3%
36.8% 46.7% 80.0%
‘ 8.9% 17.7% 30.4%
-3.8 =31 6.9
‘ -12 -7 17
-2.0 -1.4 3.2
— — 1
2 ’ 12 16 6 34
Program 8.2 12.9 129 43.0%
35.3% 47.1% 17.6%
J 63.2% 53.3% 20.0%
| 15.2% 20.3% 7.6%
3.8 3.1 ( -6.9
1.3 .9 -1.9
2.0 1.4 -32\_‘
Column 19 30 30 79
Total 241 38.0% 38.0% 100.0%
Chi-Square Value DF Significance
Pearson 10.92937 2 .00423
Likelihood Ratio 11.49290 2 00319

Minimum Expected Frequency—8.177

total N, and as a residual from the expected value in “rz.aw," Studentized, and
adjusted forms. Note that the largest residuals are found in th; column marked
“typical” where 53.3% (24 out of 45) Control teachers chose. this response versus
17.6% (6 out of 34) of the Program teachers. By re-expressing the ce.ll entne§ in
each of these forms the data analyst may begin to see more of lhe. information
contained in the table that the basic cell counts alone cannot provide.
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Comparison of Individual Proportions

The chi-square procedure, as Berkson noted in 1938 is an omnibus test.2 In the
case of a test for homogeneity among K groups classified by J levels of the
dependent variable A, the hypothesis under test is expressed as

-
|

P(AlG)) P(A,|G,) P(A)|Gy) | P(A,)
P(AlG)) P(A4]G)) P(A|Gy) P(A;)

Hy: ’ = =. = = ’ 4)
LP(AJIG,)J_ P(4,1Gy) P(A;|Gx) P(A))

against the alternative that H, is false. If the hypothesis is rejected, one would
like to be able to find the contrasts among the proportions that are significantly
different from zero. This may be accomplished by a well-known procedure that
alfows one to construct simultaneous confidence intervals for all contrasts of the
proportions in the design, across groups, while maintaining the specified Type I
ervor probability. w@mk%m, which
is used for the construction of contrasts in the analysis of vanance. Scheffe’s
work was extended by Dunn (1961) and applied to qualitative variables by
Goodman (1964) in the 1960s.

If a linear contrast in the population proportions in a contingency table is
denoted as V¥, the sample estimate is W and is defined as

V= Zap,, (5)

where p, is the proportion in Group & and Za, = 0. The limiting probability is (1
— «) that, for all contrasts,

P - SEWV' X2 (40 < U <P+ SEgN X%—11-a ()
where
g3 = S arlide g1 -, ™
k

and \/X_ is the (1 — oJth percent value from the chi-square distribution with K —
1 degrees of freedom. Some of the earlier work with this procedure may be found
in Gart (1962), Gold (1963), and Goodman (1964).

Table 10.3 contains an example of such a contrast. Here, the proportion of
teachers from each group who chose “very typical™ as their answer are com-
pared.

20t is intriguing that in spite continuing criticism of omnibus tests as not providing specific
answers to research questions, they are still widely used. Sec Rosnow and Rosenthal (1989) for
further discussion including their rule of thumb which states that whenever we use a chi-square or ¥
test with greater than ore degree of freedom, we have probably tested a question in which we are not
interested.
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TABLE 10.3 )
Computing a Confidence interval for the Difference
Between Proportions

. 24 6
=gt (=1 53
= .5333 - .1765

= .3568
(.5333)(.4667) {.1765)(.8235)
(-2
a5 34

SE7, = (1)2
_ 2489 1453
a5 34
= 0055 + .00427
= .0098
SE2, = \/SE%, = \/.0098 = 03902
3588 — /0098 V538 < ¥ < 3568 + \ 0098 5399
114 < § < 539

The onl " is post hoc application is

planned sct of cantrasts. A generally more powerful procedure results frgrp th}e
use of a Bonferroni-type critical value where the Type I error prqbabllny 1s
spread over just the contrasts of interest. Such a value may bc found the.lable
given originally by Dunn (1961) and included 1n many Fesls (cf. Marascuilo &
Serlin, 1988). The value 1/y2 in the confidence interval is replaced by the value .
taken from Dunn's table based on O, which equals thf: guuber of planned
contrasts and the degrees of freedom, which equals infinity.

Measures of Association

The value of a chi-square statistic is difficult to evaluate as it is both a funcnon of
the truth of the hypothesis under test and the sample size. To double the size of a
sample, barring sample-lo-sample fluctuations, will double the size of the comn-
puted chi-square statistic. To compensate for thisl, the data analyst should al\f'ays
calculate an appropriate measure of association in order to assess the practical,
that is. the meaningful significance of the findings. . ,
Bishop, Fienberg, and Holland (1975, chap. 1) prowdcq an overview of
various measures of association for two-dimensional tables. They made an im-
portant point when they noted that the issue today is not to develop an appropri-
ate measure of association for a given problem, but rather “to choose wisely from
among the variety of existing measures” (p. 373). For example, SPSSX :_md
BMDP both offer over 12 measures of association to choose from. Table 10.41s a
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TABLE 10.4
Measures of Association for the Data of Table 10.1

Approximate

Statisti
istic Value ASE7 7 value Significance
Phi .37195

Cramer's V 37195
Contingency Coefficient .34862
Lambda :
symmetric .20482 11844 1.61109
w!th SCHOOL dependent .20588 .18347 1.00639
with PDETER dependent .20408 11224 1‘64993
Goodman & Kruskal Tay : ‘
Wfth SCHOOL dependent 13835 .07330
with PDETER dependent .07180 .03956
Uncertainty Coefficient :
symmetric 08259 04599
/ . . 1.7
Wfth SCHOOL dependent .10643 .05921 1 73;3‘:
\ ith PDETER dependent 06747 03762 1.79391
endall’s Tau-b —.34075 ' '
' . .09591 -3.53772
gzr::rillas Tau-c —.38584 .10906 —3.53772
-.568
Somerts D - 44 .13738 -3.53772
symmetric —.33725 09
/ . .09492 -35
w!th SCHOOL dependent —.29510 .08352 -3 533;:
o with PDETER dependent —.39346 .11052 ~3'53772
Szz;sr?ai Rco"e| ; -.35403 10173 -3.32169
atio -
o n 36041 1014 —3.39041
wfth SCHOOL dependent 37195
with PDETER dependent 35403

.00423 *
.00423 *1
.00423 *1

.00454 *2
.00367 *2

00319 *3
00319 *3
00319 *3

.00069
.00055

*1 Pearson chi-square probability
. ;
.2 B.ase>d on chi-square approximation
3 Likelihood ratio chi-square probability

copy of the measures of association produced by SPSSX for the example in Table

10.1.

If i
. thzdata are generated from a single sample, then the proper test is one of
pendence and a measure of association is the mean square contingency

c . . .
oefficient. Designated as $2, its sample estimate s calculated as

(8)

I .
t can be shown that the maximum value that 2 can attain is $2 . = the
~ max

minimum of (/ — 1) or (J — 1). To correct for this compute
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2
o =2 9)
which is referred to as Cramer’s measure of association (Cramer, 1946).

If both variables are ordered, one is presented with a variety of choices
including the standard product-moment correlation coefficient (Kendall & Stuart,
1969), tau-a and tau-b (Kendall, 1970; Kendall & Stuart, 1979), Goodman and
Kruskal’s tau, and gamma (Goodman & Kruskal, 1954, 1959, 1963). Com-
parison of these methods is given by Gans and Robertson (1981) and Cesa
(1982). Tau is generally recommended as it approaches the normal distribution
faster than Spearman’s rho (Kendall, 1970) and is not inflated by the exclusion of
tied values as gamma is.

When the frequencies of the K groups are cross-classified by a dependent
variable that is ordered, Serlin, Carr, and Marascuilo (1982) proposed a measure
that is the ratio of the calculated test statistic to the maximum the statistic can
reach. Their measure ranges from zero to unity. and it is interpreted just as n? is
in the parametric analysis of variance (ANOVA). For Table 10.2, v = .37.

In the case of a 2 X 2 table, the well-known measure of association based on

x2 is $2 and is calculated as

"

— X’
o= (10)

If Kendall’s tau is calculated for the same table, it will be seen that phi = tau.

An alternative to the use of phi is to employ the odds ratio (Fienberg, 1980).
For a 2 X 2 table the categories defining the table may be labeled as A, not-A, B,
and not-8. The probability of observing B, given the presence of A, can be

expressed as

P(B|A
(lfl _). (I
P(B|A)
Alternatively. the probability of observing B, given the absence of A, is
P(B|A
(8] i) (12)
P(B|A)

A simple measure of association, apparently first proposed by Cornfield (1951},
is the ratio of these two odds. In the sample, the measure is calculated as

o =SS
=T (13)
K fiafan
with a standard error estimated as
1 I 1 I
SEA=\/—+—+—+—. (14)
y fll f22 fIZ fZl
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A useful discussion of this measure. which is widely used in bio-medical
research, including additional references may be found in Fleiss (1973). The
choice between the two coefficients, tau and phi, for the 2 X 2 table is not clear-
cut, and the reader is referred to Fleiss for further discussion.

Analysis of Ordered Categories

In spite of its usefulness, there are conditions under which the use of Pearson’s
chi-square, although appropriate, is not the optimum procedure. Such a situation
occurs when the categories forming a table have a natural ordering. The value of
the statistic expressed in Equation 5 will not be altered if the rows and/or
columns in a table are permuted. However, if ordering of the rows or columns
exists, their order cannot meaningfully be changed. This is information to which
chi-square is not sensitive. Instead, the researcher may choose among several
alternatives.

If both rows and columns contain a natural ordering. two methods are avail-
able. The first is a procedure taken from Maxwell (1961) as modified by Mar-
ascuito and McSweeny (1977). 1t is used to test for a monotonic trend in the
responses across categories.

The first step is to quantify the categories using any arbitrary numbering
system. As the method is independent of the numbers chosen. both Maxwell and
Marascuilo and McSweeny recommended numbers that simplify the calculations
sgch as the linear coefficients in a table of orthogonal polynomials. These coeffi-
cients are then applied to the marginal frequencies, the ;. and Y.}, to produce the

sums and sums of squares for use in calculating a slope coefficient by the usual
equation:

_ NESYY, = SF)EY)

B
NEYD) - (7)) (1
Under the assumption that B = 0, the standard error of B is calculated as
S%
SEg = — 2~ .
PN 1
Then the hypothesis of no linear trend may be tested by
. B
7 S X “

. A second procedure for examining tables with ordered marginal categories
mvo}ves the use of Kendall's (1970) rank tau, corrected for ties. If the observed
tau is statistically significant, the hypothesis of no association is rejected. In
addition, the statistic itself is a measure of association or array of the data, as
discussed in the previous section.
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When one of the two varables defining a table is ordered, Kruskal and
Wallis’s (1952) nonparametric one-way analysis-of-variance procedure may be
utilized to test for equality of distributions. This procedure is described by
Marascuilo and Dagenais (1982). Consider the case of an [ X J contingency
table, where the dimension / is defined by mutually exclusive ordered categories.
The Kruskal—Wallis statistic is based on a simultaneous comparison of the sum
of the ranks for the K groups. To apply the statistic in the case of an/ X K table,
the frequencies within a category along dimension / are considered to be tied
and, therefore. are assigned a midrank value. One then sums the ranks across /,
within Group k, to obtain the summed ranks used in calculating the statistic.

Log- and Logit-Linear Models

This versatile statistic of Pearson’s can also be extended to three-dimensional
tables as well (Agresti, 1990; Fienberg, 1980). Given the expected frequencies
derived from a model, one computes the statistic as shown in Equation 1. The
degrees of freedom are computed as the number of cells in the table minus the
number of parameters fitted. As Fienberg (p. 40) noted, Equation | is
asymptotically equivalent to G2 which is —2 times the log of the likelihood ratio
statistic. The choice between these two statistics is discussed in the next section.

The derivation of the expected values in multidimensional tables are, of
course. at the heart of log-linear and logit-liner models. Many articles and texts
are now available for these procedures, including the works of Bishop et al.
(1975), Goodman (1978), Haberman (1978), and Fienberg (1980). These pro-
cedures are implemented through several packaged computer programs including
LOGLINEAR in SPSSX, SAS CATMOD, Goodman's ECTA, BMDP 4F,
Nelder’s GLIM, and Bock’s Multiqual, which are familiar to many researchers.

Although most applicable for analyzing multidimensional tables, it should be
pointed out that these models can be used on two-dimensional tables as well. It is
likely that log-linear models will eventually supersede the use of Pearson’s chi-
square in the future because of their similarity to ANOVA procedures and their
extension to higher-order tables. Discussion of this methodology. however, is
beyond the scope of this chapter.

Log-Likelihood Ratio

An alternative procedure to calculating Pearson’s chi-square to test a hypothesis
concerning a multinomial is the use of the likelihood ratio statistic. It is a
maximum likelihood estimate labeled G2 and defined as

1)
G =23 3 fyep (18)
i=1 j=1 Y E(fij)
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In their text on discrete multivariate analysis, Bishop et al. (1975) used log-linear
models, as opposed to additive models, for contingency table analysis. As a
Summary statistic they stated a preference for maximum likelihood estimators
(MLE:s) on theoretical grounds. Additionally, practical reasons for the use of this
procedure were given:

L. Ease of computation for linear models.

2. MLEs satisfy certain marginal constraints they called intuitjve.

3. “The method of maximum likelihood can be applied directly to multi-
nomial data with several observed cell values of zero. and almost always

produces non-zero estimates for such cells (an extremely valuable property
in small samples)” (p. 58).

They further stated, “MLEs necessarily give minimum values of G2, it is
appropriate to use G2 as a summary statistic . . . although the reader will ob-
serve that, in the samples where we compute both X2 and G2, the difference in
numerical value of the two is seldom large enough to be of practical importance”
(p. 1206).

There are cases where the Jikelihood-ratio statistic may be preferred over chi-
square. Such may occur when some expected values are quite small or when the
contingency table contains a structural zero.

Several investigators have compared X2 and G2 in a variety of research situa-
tions. Chapman (1976) provided an overview of much of this research, including
the work of Neyman and Pearson (1931), Cochran (1936). Fisher (1950), Good
etal. (1970), and West and Kempthorne (1972). From these comparisons, neither
of the two procedures emerges a clear favorite. When one method is better in
some respect than the other, it seems to result from a particular configuration of
sample size, number of categories, expected values, and the alternative hypoth-
esis. An exception to the general equivalence of these two statistics can be found

in the literature on partitioning of contingency tables, which is discussed follow-
ing the next section.

Comparison of Two Independent Chi-Squares

It is conceivable that situations may occur in which one may want to test the
equality of two independent chi-square values. One direct method to accomplish
this would be to compute the same measure of association for each table and
visually compare their values. If a test is required, Knepp and Entwisle (1969)
presented, in tabular form, the 1% and 5% critical values for this comparison for

degrees of freedom that equal | to 100. They also provided a normal approxima-
tion calculated as
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1
1xh - 33
7 = — a9
v

where X,, and X,, are two independent sample chi-square values, eac‘h with v
degrees of freedom. The statistic Z is approximately distributed as a unit normal
variable. . o

D’Agostino and Rosman (1971) offered another simple normal approximation
for comparing two chi-square value in the form of

Vi - V4 (20)
1
Vi-a,

This approximation was tested by Monte Carlo methods andy'found to be qum;
good for cases with degrees of freedom greater Fhan two. With one degree o
freedom the researcher must use Knepp and Entwistle's tabled values. which are
2:19 for a = .05 and 3.66 for a = .01. D’Agostino and Rosman glso n9tcd that
for df’s greater than 20, the denominator in Equation 20 makes little difference
and

VI - VX1 2n

sed in place of Equation 9.
mai"ht::c suagme qusstion thatqproduced the data in Table 10.1 w,'as a‘sked of 68
teachers from two groups in a different school district. Pearson’s Fhl-square for
this second sample equaled 5.106 compared to a valgc of 10.929 in Table lQ. ]
With only two degrees of freedom we can use Equation '19'to obtanp a z statistic
of 2.05, leading us to conclude that the two sample statistics are dlfferenl from
each other. In other words, the lack of homogeneity between groups is not the
ur two samples.
SamAes f;):)t?:d by Scrlinp(personal communication, 1990) one should be :jlblc to
extend this same approach to tables with different degrees of freedom. Using the
relatively accurate cube-root approximation one should be able to compute a z

statistic as
VXX
Vv, Vv,

z=——1 2 (22)
{2 2
i + ——
9v, Yy,
Although this approximation is quite good for even two or three degrees of

freedom, this is still a large-sample approximation. A .
One should note that these procedures should be used with extreme caution
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for at least two reasons. It is possible for very different configurations within two
tables to produce the same chi-square values. It is also possible to obtain different

chi-square values from tables with identical internal patterns if the sample sizes
differ between tables.

Partitioning

At about the same time that Lewis and Burke were writing, the first extensive
work on the partitioning of an / x J contingency table into components was
being conducted by Lancaster (1949, 1950, 1951), who demonstrated that a
general term of a multinomial can be reduced to a series of binomial terms. each
with one degree of freedom. This work along with the work of Irwin (1949),
Kimbal (1954), Kastenbaun (1960), Castellan (1965), and Bresnahan and
Shapiro (1966) allows one to decompose a contingency table into a set of smaller
lables whose individual chi-square statistics sum to the total chi-square.

The partitioning of contingency tables is not often seen in the literature,
however, for two primary reasons. First, log-linear analysis, the examination of
residuals, and the use of contrasts permit one to examine the sources of variation
as casily. Second, Shaffer (1973) demonstrated that to test one partition for
statistical significance is actually to test the hypothesis that no partition is signifi-
cant against the alternative that one is significant and the remaining partitions are
not. The interested reader is referred to the references cited earlier,

Several procedures that supplement or provide an alternative to partitioning
are available. Graphical analysis is discussed and exemplified by Boardman
(1977), Cohen (1980), Cox and Laugh (1967), Fienberg (1969), and Snee (1974).
One version of graphical analysis, based on Brown's work (1974, 1976), is
implemented by BMDP's 2F procedure (Dixon, 1983).

CONCLUSIONS

Ninety years after its original development, Pearson’s chi-square statistic re-
mains a useful and powerful tool in our attempts to account for variation in data.
Its ready availability makes for widespread use while research into its various
properties and over its appropriate applications continues. In addition to remind-
ing the researcher to pay heed to ali of the usual issues and wamnings applicable to
any inferential statistic, such as being aware of its assumptions and what precise
hypothesis it tests, a few points bear repetition.

Under certain conditions, expected cell frequencies less than five do not
substantially alter the Type I error rate of the chi-square statistic. The decrease in
power that accompanies these small expected values, though, should encourage
one to use large sample sizes.

The debate over the use of the Yates correction for continuity is unresotved.
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There is general agreement, however, that the correction often results in an
overly conservative test when the margins in a table are generated from random
variables.

There are a number of supplementary and alternative approaches to the use of
Pearson’s chi-square that the researcher should know. Often the questions one
asks of data may be more directly or efficiently answered by planned contrasts of
proportions, partitioning of the total chi-square, or the use of log-linear models.
A useful paper on this subject was written by Cochran (1954), He presepllcd
methods for dealing with some specific contingency table designs anq probability
distributions. In addition to the previously mentioned recommendations regarc}-
ing minimum expected values. he discussed testing goodness-of-fit hxpgtheses 1:
different distributions, degrees of freedom in 2 X N tables, and combining 2 X 2
tables.
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