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10 On the Use and Misuse 
of Chi-Square 

Kevin L. Delucchi 
Developmental Studies Center, San Ramon California 

One of the most useful tools available to any data analyst-especially one who 
deals with social science data-is Pearson's statistic known as chi-square. Its 
usefulness stems primarily from the fact that much of the data collected by social 
scientists is categorical in nature-whether ordered or unordered. Not only are 
variables such as sex, school, ethnicity, and experimental group categorical. but 
one can argue that many other measures are best, that is, conservatively, ana­
lyzed by being treated as categorical variables. This would include. for example. 
the ubiquitous Likert-type item often found in questionnaires and other mea­
sures. 

As well as being applicable in many common analysis Situations, the chi­
square statistic is also quite widely known, relatively easy to compute. and 

available on most computer packages of statistical software. Like the good­
natured nextdoor neighbor who always lends a hand without complaining, how­
ever, the chi-square statistic is easy to take for granted and easy to misuse. 

The title of this chapter comes from a 1949 landmark article by Lewis and 
Burke entitled "The Use and Misuse of the Chi-Square Test," which appeared in 
Psychological Bulletin. The purpose of their article was to counteract the im­
proper use of this statistic by researchers in the behavioral sciences. It addressed 
nine major sources of error, cited examples from the literature to illustrate these 
points, and caused a stir among practicing researchers. The Lewis and Burke 

paper was followed by several responses (Edwards, 1950; Pastore, 1950; Peters. 
1950) and a rejoinder by Lewis and Burke (1950). 

Since then, use of the chi-square statistic among social scientists has in­

creased, a great deal of research has been conducted on its behavior under a 

variety of conditions, and several methods have been developed to handle some 
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of the problems cited by Lewis and Burke. Several years ago I reviewed develop­
i;ments since Lewis and Burke's original paper (Delucchi, 1983). In this chapter, I
 

provide a further update, reviewing those common errors, providing examples of
 
some of them, and discussing supplementary and complementary procedures for
 
the analysis of data commonly analyzed with Pearson's chi-square statistic.
 

THE USE OF CHI-SQUARE 

To begin, let me remind the reader that there is a distinction between Pearson's
 
chi-square statistic (Pearson, 1900) and the chi-square distribution. The former is
 
a number calculated from data. which is compared to the latter, a family of
 
theoretical distributions defined by their degrees of freedom. Unless stated other­

wise, the phrase chi-square refers here to the computed statistic, symbolized by
 
Xl, as opposed to the Greek letter chi (X), which is used to denote the distribu­

tion. 

As originally proposed by Pearson, the statistic is based on comparing the
 
observed frequencies in a contingency table with those frequencies that would be
 
expected under the hypothesis of no association when testing for independence
 
between two variables in the single sample model. or with those expected under
 
the hypothesis of homogeneity of distributions in the multiple sample model.
 

Table 10. J illustrates the case of a 2 x 3 contingency table I In this example
 
we have the responses of 79 teachers from two groups of schools. Teachers at one
 
group of schools are involved in an educational intervention, whereas those in
 
the other school are serving as a control group. As part of an effort to determine
 
the effects of the intervention on the teachers' perceptions of school climate. the
 
teachers filled out a questionnaire that included a section asking them to indicate
 
how typical a series of descriptions were of their school. The item used in Table
 
10.1 read, "The principal determines the educational program and philosophy."
 
Their responses were classified into one of three categories: not typical, some­

what typical, and typical. We wish to know if there is evidence that teachers from
 

the two groups view this aspect of school climate differently. Pearson's statistic is
 
defined as: 

I I [(J,J - EC(';)j2x~ 
(I)i~1 ;~I EiJ,;l 

'These data. as are most of the other e~amples in this chapter, were collected as part of the 
evaluation of the Child Development Project (COP), a multiyear demonstralion program thaI is 
attempting to promote the prosocial development of elementary.age children. Interested readers are 
referred to Solomon. Watson. Delucchi. Schaps. and BaltiSlich (1988) and Watson. Solomon. Bal­
tislich. Schaps. and Solomon (1989) for additional informalion 
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TABLE 10.1 
Contingency Table of School by Principal's Perceived Role 

SCHOOL by POETER 
Principal determines the educational 
program and philosophy 

Row 
Total 

45 
57.0 

34 
43.0 

79 
100.0 

30 
38.0 

tY:jiCal 

2414 

3 
16 1_ 
30 
38.0 

somewhat 
2 

12 

19 
24.1 

not 
typical 

1 

Count 

Program 

SCHOOL 
Control 

Column
 
Total
 

Chi-Square Value OF Significance 

Pearson '092937 2 .00423 
likelihood Ratio 11.49290 2 .00319 

Minimum Expected Frequency 8.177 

Where: 

I = number of rows 
J = number of columns 
v = degrees of freedom 
=(/-I)(J-I) 

lij = observed frequency in ith row. jth column 
EUij) = expected value of the observed frequency 

= (Fi)(F) 
F 

Computing the expected values gives us the following: 

X 2 _ 1)(J_11 = [(7 - 10.8)2 + (14 - 17.1)2 + (24 - 17.1)2U 

(12 - 8.2)2 + (16 - 12.9)2 + (6 - 12.9)2] 

10.8 + 17.1 + 17.1 + 8.2 + 12.9 + 12.9 

863.42 

~ 

= 10.9, (2) 
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which we then compare to a tabled value for Ci = .05 from the chI-square 
distribution with two degrees of freedom, )(2 = 5.99. Our computed value is 
greater than the tabled value. so we have evidence to reject the hypothesis under 
study, which is the null hypothesis of no group differences. 

The Misuse of Chi-Square 

Lewis and Burke ccntered their 1949 article around nine principle sources of 
error they found in their review of published research. Those nine sources, in the 
order Lewis and Burke listed them, are: 

1.	 lack of independence among single events or measures; 

2.	 small theoretical frequencies: 

3.	 neglect of frequencies of non-occurrence; 

4.	 failure to equalize the sum of the observed frequencies and the sum of the 
theoretical frequencies; 

5.	 indeterminant theoretical frequencies; 

6.	 incorrect or questionable categorizing: 

7.	 use of non frequency data: 

8.	 incorrect determination of the number of degrees of freedom: and 
9.	 incorrect computations. 

Two of these errors, (8) incorrect determination of the number of degrees of 
freedom and (9) incorrect computations, are largely obsolete thanks to the wide­
spread use of computer packages of statistical software. Nevertheless, it does no 
harm to remind the reader that errors in computation, program coding, data entry, 
and so forth are easy to make. A very good habit to acquire is to dOUbt your 
results and check the integrity of your data all the way back to the original raw 

data file. This is especially important in small-sample data sets where each data
 
point carries substantial weight in the final results.
 

The seventh error, the use of non frequency data, is also an error that is not 
often encountered in the current research literature. This is probably the result of 
greater familiarity with chi-square among practitioners and journal reviewers. 
Suffice it to note the data entered into Equation I must be frequcncies, not 
percentages, means, or any number that is not a count. 

Lewis and Burke cited the first error in their list, lack of independence among 
single eVents or measures, as the error they found most frequently in their brief 
review of articles that used the chi-square statistic to analyze data. This is also 
probably the most likely cause of the fifth source of misuse, indeterminant 
theoretical frequencies, which they noted, "commonly arises from a lack of 
independence between measures" (p. 478). 
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It is interesting to note that one of the examples Lewis and Burke used to 
illustrate this error, in which a set of die are thrown repeatedly. is actually a poor, 
if not incorrect, example (Pastore, 1950). 

One of the basic assumptions under which the statistic is derived is that of 
independence of the data. Just as one should not compute a two-sample t test on 
matched-pair data, so also one must not compute Pearson's chi-square on depen­
dent measures. This is tme regardless of what produces the interdependence; 
repeated measurement of the same person, sample matching. or correlation in­
herent in the subjects themselves such as data from spouses. siblings, parent and 
child combinations. and so on. The proper statistic for correlated data is 
McNemars's measure In the 2 x 2 table, and either Stuag's or Bowker's test in 

the K x K table (Marascuilo & McSweeny, 1977) 

Small Theoretical Frequencies 

Lewis and Burke (1949) labeled the second error in their list. the use of expected 
frequencies that are too small, as the most common weakness in the use of chi­

square (p. 460). They took the position that expected values of 5 were probably 
too low and .qated a preference for a minimum expected value of 10, With 5 as 
the absolute lowest limit. As examples they cited two published studies that used 
chi-square tests with expected values below 10. It appears today that their pOSI­

tion, a popular one among researchers, may bc overly conservative. 

This problem of small expected values has been examined from thc perspec­

tives of two different applications. In testing goodness-of-fit hypotheses, the 
categories are chosen arbitrarily, permitting control over the size of the expected 
values by choice of category sizes. In contrast, the categories of contingency 
tables used for testing association hypotheses are relatively fixed, and one is 
forced to increase the expected values by increasing the sample size and/or 
collapsing rows and/or columns. Research taken from the perspective of this 
latter case are considered first. 

Tests of Association Hypotheses in Contingency Tables. Based Oil Monte 
Carlo and empirical studies, recommendations with respect to minimum ex­
pected cell frequencies in testing hypotheses of association have included recom­
mended minimum values of 1 (Jeffreys, 1961; Kempthorne, 1966; Siakter, 
1965), 5 (Fisher, 1938), 10 (Cramer, 1946), and 20 (Kendall, 1952) Cochran 
(1952) first proposed the oft-cited rule-of-thumb that chi-square may be applied 
if no more than 20% of the cells have expected values between one and five. 

Wise (1963) suggested that small (i.e., less than five) but equal expected fre­
quencies were preferable to unequal frequencies where a few expected values are 
small, and the remaining frequencies are well above most criteria. Good, Grover, 
and Mitche!!...U21Qlconcl!lded that if the expected values are equal they may be 

as low as 0.33 (p. 275). 
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This view of the statistic as being robust with respect to minimum expected 
values is also supported by the findings of Lewontin and Felsenstein (1965). who 
used Monte Carlo methods to examine 2 x N tables with fixed marginals ..~ 
small expected values in each cell and degrees of freedom greater than five, they 
concludedthat the test tends to be conservatIve. Evs:n the occurrence of expected 
values below one generally does not mvaIJdale the procedure. Bradely, Bradely, 
McGrath, and Cutcomb (1979) conducted a series of sampling experiments to 
examine the Type I error rates of chi-square in the presence of small expected 
values in tables as large as 4 x 4. Their results offer strong support for the 
robustness of the statistic in meeting preassigned Type I error rates. Additional 
support comes from Camilli and Hopkins (1978) study of chi-square in 2 x 2 
tables. They found that expected values as low as one or two were acceptable 
when the total sample size was greater than 10. 

Testing Goodness-oj-Fit Hvpotheses. In testing goodness-of-fit hypotheses, 
Kendall and Stuart (1969), following suggestions by Mann and Wald (1942) and 
Gumbel (1943), recommended that one chOose the boundaries of categories so 
that each has an expected frequency equal to the reciprocal of the number of 
categories. They preferred a minimum value of five categories Siakter (196'\. 

1966), Good (1961), and Wise (1963) found that in testing goodness of fit, 
expected values may be as low as one or two for an alpha of .05 when expected 
values aruqual. For unequal expected values or an alpha of 01 , the expected 
frequencies should be at least four. 

Yamold (1970) numerically examined the accuracy of the approximation of 
the Chi-square goodness-of-fit statistic. He proposed that "if the number of 
classes, s, is three or more, and if r denotes the number of expectations less than 
five, then the minimum expectation llJay be as small as 5rls" (p. 865). He 
concluded that "the upper one and five percentage points of the X2 approximation 
can be used with much smaller expectations than previously considered possible" 
(p. 882). 

After considering earlier work, Roscoe and Byars (1971) concluded that one 
should be concerned primarily with the average expected value whcn considering 
the goodness-of-f.t statistic with more than one degree of freedom. In_the case of 

G
ual expected cell frequencies, they suggested an average value of 2 o;:-mcireror 

an alpha equal to .05 and 4 or more for-an alpha equal to~In the nonuniform 
case, they recommend average expecterl values of 6 and 10, ~y 

urged the use of this average-expected-value rule 10 the test tor IOdependence as 
well, even when the sample sizes are not equal. As Hom (1977) noted, this 
average-expected-value rule is in agreement with Slakter's (1965, 1966) sugges­
tion that what may be mO.st important i.s the average of the expected frequencies 
and also subsumes Cochran's rule that 20% of the expected frequencies should be 
greater than one. 

Summarizing this work on minimum expected values for both association and 
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goodness-of-fit hypotheses, as a general rule, the Chi-square statistic may be 
properly used in cases where the expected values are much lower than previously 
considered permissible. In the presenq~_oi.sn:!.!!!.Lexpected values, the statistic is 
quite robust with respect to controlling Type I error rate, especially under the 
following conditions: (a) the total N is at least five times the number of cells; (b) 

the average expected value is five or more; (c) the expected values tend toward 
homogeneity; and (d) the distributIOn of the margms 1S not skewed. Additional 
references on this matter that lTlay be of interest to readers can be found in 
Hutchinson (1979). 

For most applications, Cochran's rule, which states that all expected values be 
greater than one and not more than 20% be less than five, offers a fair balance 
between practicality and precision. An alternative to consider, especially in the 
case of small or sparse tables, is the computation of an exact test (Agresti & 
Wacker/y, 1977; Baker, 1977; Mehat & Patel, 1980; Mehat and Patel, 1983; 

Mehat, Patel. & Gray, 1985). In recent years, these procedures have become 
more accessible due to the availability of increased computer power and efficient 
algorithms. A comprehensive implementation can be found in the StarxUCI soft­
ware (Cytel Software, 1991). In spite of its name, however, the use of an "exact 
test" is not without controversy. As is discussed in a later section, debate stTiiJ 
continues over the appropriate use of both exact tests and continuity correctio'.!.§1 
Berkson (1978), Kempthome (1979), Upton (1982) and D'Agostmo, Chase. ~nd 

Belanger (1988) offered the opposition to its use in 2 x 2 tables. 

Power Considerations. An important point that is easily overlooked con­
cerns the effect of small expected values on the power of the chi-square test. 
Overall (1980) examined the effect of low expected frequencies in one row or 
colulTln of a 2 x 2 design on the power of the chi-square statisttc. (This most 
often results from the analysis of infrequently occurring events). Setting (I - a) 
= .70 as a minimally acceptable level, Overall concluded that when expected 
values are quite low, the power of the chi-square test drops to a level thai 
produces a statistic that, in his view, is almost useless because low power means 
the inability to detect an existing difference. 

Specific advice as to the selection of sample size is difficult to provide as the 
requirements and standards of researchers vary. In general, following eacbral} 's 
rule will proyjde sufficient power in most cases. Tables for computing power in 
the use of chi-square are given in Cohen (1988, chap. 7). The point here is to 
remind the reader that Type II error rates go up as sample size goes down 

Neglect of Frequencies of Nonoccurrence 

Omitting frequencies of nonoccurrence from contingency rahles is a surprisingly 
easy error to make, and examples can still occasionally be found. ConSider, for 
e.xample, the case of some of the early work on the detection of Item hias. In 
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1979, Scheuneman proposed a method of detecting potentially biased items in an 
otherwise unbiased test analogous to the more demanding item-response theory 
approach by categorizing test-takers based on the total test score to equate for 
ability differences. To test an item for evidence of bias against some subgroup 
based on, say. sex or ethnicity of the test-taker. she proposed classifying each 
person in the sample on three dimensions: their group membership. total test 
score. and whether or not they passed the item. 

But the contingency table she fonned for calculating chi-square on was not 
this three-dimensional table. but rather a two-dimensional table defined by total­
score grouping and group membership-counting only the numbers of each 
group that passed the item in question. As noted by several critics (Baker. 1981; 
Marascuilo & Slaughter, 1981). the resulting statistic is not distributed as chi­
square because she neglected to count the frequency of the group members who 
did not pass the item. For an example of the statistically correct approach the 
reader is referred to Zwick and Ericikan (1989). 

By neglecting the frequencies of nonoccurrence one usually commits the 

fourth error. failure to equalize the sum ofthe ob~e!:Y.~l~q1!..t;!J<:K§._'llld.lh£...~u.n:!.. 

of tht:Jheoreticanreq",e.Bcies~-Aiihoughrelativelyrare, this will result directly 
fro~ the error discussed~~[[ier-neglectingthe frequency of nonoccurrence. 
One quick check of the validity of a contingency table for computing chi-square 
IS to see if the sum of the observed frequencies is equal to the sum of the 
expected. If they are not equal. something is wrong. 

Incorrect or Questionable Categorizing 

This problem, more an issue of methodology than of mathematical statistics, is 
found in situations where the data need to be categorized in some arbitrary fonn 
in the absence of naturally occurring categories such as group membership. The 
distribution of frequencies within a set of categories is at the heart of the statistic, 
so the selection of those categories obviously will have a great deal of influence 
on the obtained value. The conservative data analyst will define categories before 
collecting data (preferably as a result of collecting and analyzing pilot data). The 
categories should be mutually exclusive so that each outcome belongs in one, 
and only one. category. and they must be as well-defined as possible so that there 
is no question about what constitutes membership in a given category. The 
categories themselves should cover the full range of possible responses, yet not 

be so narrowly defined that the resulting frequencies produce very low expected 
values. 

While on this subject of classification, a comment on the matter of mis­
classification is appropriate. One issue of categorical analysis that has received 

little attention in social science research is the effect of misclassification on the 
power and Type I error rate of the chi-square test. Most of the relevant literature 
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is found in the biostatistics literature (e.g., Mote & Anderson, 1965). One 

exception to this in the area of educational research is an article by Katz and 
McSweeny (1979), who discussed the effects of classification errors on the 
significance level and power of the test for equality or proportions. They devel­
oped and discussed a correction procedure based on estimates of the probability 
of false negatives and false positives and noted that the detrimental effects of 
misclassification can be marked, including a loss in power. This problem is 
especially likely to occur when one of the proportions being tested is small. and 
the probability of misclassification is not equivalent across groups. Any re­
searcher who suspects the presence of misclassified data should consult the Katz 
and McSweeny (1979) article and the references they cited. The key to using 
their procedure. and its major drawback, is the need for estimates of the rate of 

misclassification that often may be unobtainable. 

Correction for Continuity 

As part of their discussion on the proper use of the chi-square statistic, Lewis and 

Burke presented the Yates correction for continuity, noting that It is justified only 
in the case of a 2 X 2 table. Since the time of their writing. questions have arisen 
regarding the appropriateness of the use of a correction for continuity. 

Categorical variables are discrete and the chi-square distribution is con­
tinuous. thus a correction to improve the approximation can be made. The most 
well-known correction was proposed by Yates (1934) and is formed by adding or 
subtracting ~ to each observed frequency so as to move the observed value closer 
to the expected value. Thus it becomes more difficult to reject the hypothesis 

being tested. Symbolically. the corrected chi-square. X~, is written as 

I } [( I 'X~= ~ ~ fiJ+2- E(f;)]· (3) 
,~I ,~I E(jij) 

The analytical derivation of the correction expressed in Equation 3 is given by 

Cox (1970). 
The disagreement over the use of this correction is based not on its theoretical 

grounding but on its applicability. Plackett (1964), confinning empirical results 
of Pearson (\947), argued that the correction is inappropriate if the data come 
from independent binomial samples. Grizzle (1967) extended Plackett's results 

to the general case and concluded !.bat the correction is so conservative as to 

ri:.!lS!2: it useless for practici!l..pu~es. ~ 
The consensus of several investigators (Camilli & Hopkins, 1978; Conover, 

1974a, 1974b; D'Agostino, Chase, & Belanger, 1988; Mantel. 1974: Mantel & 
Greenbouse, \ 968; Miettinin, 1974; Starmer, Grizzle. & Sen. 1974; Upton, 
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1982) is that the correction for continuity becomes overly conservative when 
either or both of the marginal, in a table are random. As this is often the case in 
social science research, the use of the correction sbould not be given the blanket 
recommendation that often accompanies it. 

These critics are not without critics of their own. In a paper read to the Royal 
Statistical Society. Yates (1984. followed by comments from several noteworthy 
statisticians) held that the correction for continuity is misunderstood due to strict 
adherence to Neyman-Pearson critical levels. the use of strict nominal levels and 
a refusal by investigators to accept bis arguments for conditioning on tbe margin­
als. In any event. as a couple of the discussants following Yates noted. even the 
simple 2 x 2 table contains a grcat deal of potential infoffilation and the analysis 
of even such a simple case cannot be taken lightly. 

So the debate continues after 50 years. If on conservatism IS desired 
and/or the marginal totals in the contingency table being ana yze are Ixe 
values, t en] a escuea Ie n a ot er cases. however, 
one mu e cautious in its use because the correction for continuity WI produce 
veo' conservative probabiljt)· estimates. 

Having reviewed common SOurces of misuse, let us move on to supplemen­
tary and alternative procedures that can aid in the exploration of data appropriate 
to a chi-square-based analysis. 

SUPPLEMENTARY
 
AND ALTERNATIVE PROCEDURES
 

Whereas a properly executed chi-square statistic may well be a thing of beauty to 
behold-at least to some of us-in many ways it is only the simplest of forms of 
statistical analysis. There ar t comin s to its use: (a) it is 
an omnibus test, (b) it does not necessarily utilize all of the informati val ab e 
in a contin enc ta Ie such as the or enn nes an nificance 

level is function of sam Ie size. So by itself a significant chi-square 
statistic may not provide all of the In ormation contained in the table. The 

researcher should keep in mind several procedures that supplement or serve as an 
alternative to a chi-square test. A comprehensive treatment of these and other 
methods may be found in Agresti (1990) 

One way to understand why a contingency table produces a statistically signif­
icant test statistic is to examine the cell entries expressed as more than jllSt 
counts. Table 10.2 is a table prodllced by SPSSX from the data shown in Table 
10.1. The difference in these two tables results from the information requested of 
the software. 

In addition to cell COllnts. Table 10.2 displays the cell information in terms 

of each cell's expected value, its count as a percentage of the row. column, and 
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TABLE 10.2
 
Expanded Display of Table 10.1
 

SCHOOL by PDETER 
Principal determines the educational 
program and philosophy 

Count 
Exp Val 
Row Pct 
Col Pct 
Tot Pct 
Residual not 
Std Res typical somewhat typical Row 

SCHOOL 
Adj Res 1 

7 , 

2 

14 I~ 45 

Total 

Control 10.8 17.1 17.1 57.0% 
15.6% 31.1% 53.3% 
36.8% 46.7% 80.0% 
8.9% 17.7% 30.4% 

-3.8 
-1.2 

-3.1 
-7 I 

6.9 
1.7 

-2.0 -1.4 3.2 

2 12 16 6 34 
Program 8.2 12.9 12.9 43.0% 

35.3% 47.1% 17.6% 
63.2% 53.3% 20.0% 
15.2% 20.3% 
3.8 
1.3 

3.1 
.9 I -::"-1.9 

2.0 1.4 -3.2 

Column 19 30 30 79 
Total 24.1 38.0% 38.0% 100.0% 

Chi-Square Value OF Significance 

Pearson 10.92937 .00423 
Likelihood Ratio 11.49290 .00319 

Minimum Expected Frequency-8.177 

total N. and as a residual from the expected value in "raw," Studentized, and 
adjusted forms. Note that the largest residllals are found in the col limn marked 
"typical" where 53.3% (24 out of 45) Control teachers chose this response verSllS 
17.6% (6 out of 34) of the Program teachers. By re-expressing the cell entries in 
each of these forms the data analyst may begin to see more of the information 
contained in the table that the basic cell counts alone cannot provide. 
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Comparison of Individual Proportions 

The chi-square procedure, as Berkson noted in 1938, is an omnibus test. 2 In the 
case of a tcst for homogeneity among K groups classified by J levels of the 
dependent variable A, the hypothesis under test is expressed as 

P(A I !G 2) P(AIIGK)'i PIA,) 
P(A 2 (G 2 ) 

P(AIIGI)l 
P(A 2!GK) • P(A 2 )p(A,le,) I 

Ho: f 1(4) 

P(AxIGx)J ~ P(AJ )lp(A;IGI)J P(AJ !G2 ) 

against the alternative that Ho is false. If the hypothesis is rejected, one would 
like to be able to find the contrasts among the proportions that are significantly 
different from zero. This may be accomplished by a well-known procedure that 
allows one to construct simultaneous confidence intervals for all contrasts of the 
proportions in the design, across groups, while maintaining the specified Type I 
error probability. thod is a of Scheffe's (1953) theorum, which 
is used for the construction of contrasts in the analysIs of variance. ,cheffe's 
work was extended hy Dunn (1961) and applied to qualitative variables by 
Goodman (1964) in the 1960s. 

If a linear contrast in the population proportions in a contingency table is 
denoted as 'V, the sample estimate is 'If and is defined as 

'v = "IaJi(, (5) 

where ft, is the proportion in Group k and La, = O. The limiting probability is (I 
- a) that, for all contrasts, 

'v - SE'~VX2,_"_a < tV < 'v + SE>¥,!X\~ 1=-0 (6) 

where 

SE IV 
2 =" 6 Q k

2 ft, q, 
' 

(.7'
k 
= 1 - p'

k. (7)
nk 

and ,,1)(2 is the (I - a)th percent value from the chi-square distribution with K ~ 

I degrees of freedom. Some of the earlier work with this procedure may be found 
in Gart (1962), Gold (1963), and Goodman (1964). 

Table 10.3 contains an example of such a contrast. Here, the proportion of 

teachers from each group who chose "very typical" as their answer are com­
pared. 

lit is intriguing that in spite continuing criticism of omnibus tests as nol providing specific 
answers to research queslions. they are still widely used. Sec Rosnow and Rusenthal (1989) for 
further discussion including their rule of thumb which states (hat whenever we use a chi-square or F 
test with greater than one degree of freedom, we have probably tested a question in which we are not 
interested. 
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TABLE 10.3 
Computing a Confidence Interval for the Difference 

Between Proportions 

_ 24 6 
,~~ (11 45 + (-11 34 

.5333 - .1765 

.3568
 

SE" = (1)' (.53331(.4667) (-1)' (.1765)(.8235)

• ~ + ~ 

.2489 1453 
=--+-­

45 34 

~ .0055 + .00427 

= .0098
 

SE'. = VSE2. = V.0098 = .09902
 

.3568 - V.0098 V'5.99 < w< .3568 + " ~ ',15.99
 

.114 < o1J < .599 

:;\f
The only drawback !O this l222.t hoc applicatio~ of p~" @F Fe~ a ~c.l' 

planned set of contrasts. A generally more powerful procedure results from the 
use of a Bonferroni-type critical value where the Type I error probability IS 

spread over just the contrasts of interest. Such a value may be found in the table 

given originally by Dunn (1961) and included in many tests (cf. Marascuilo & 
Serlin, IY88). The value y!0 In the confidence iptcryal is replaced by the value..­

taken from Dunn's table based on Q, which equals the number of planned 

contrasts and the degrees of freedom, which equals infinity. 

Measures of Association 

The value of a chi-square statistic is difficult to evaluate as it is both a function of 
the truth of the hypothesis under test and the sample size. To uouble the size of a 
sample, barring sample-to-sample f1uctuations, will double the siLe of the COlD­

puted chi-square statistic. To compensate for this, the data analyst should always 
calculate an appropriate measure of association in order to assess the practical. 

that is, the meaningful significance of the findings.
 
Bishop, Fienberg, and Holland (1975, chap. II) provided an overview of
 

various measures of association for two-dimensional tables. They made an Im­


portant point when they noted that the issue today is not to develop an appropri­

ate measure of association for a given problem, but rather "to choose wisely from
 

among the variety of existing measures" (p. 373). For example, SPSSX and
 
BMDP both offer over 12 measures of association to choose from. Table 10.4 is a
 

I 
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TABLE 104 
Measures of Association for the Data of Table 10.1 

Statistic 
Value ASEI T value 

APProximate 
Significance 

Phi 
Cramer's V 
Contingency Coefficient 
Lambda: 

symmetric 
with SCHOOL dependent 
with PDETER dependent 

Goodman & Kruskal Tau: 
with SCHOOL dependent 
with PDETER dependent 

Uncertainty Coefficient: 
symmetric 
with SCHOOL dependent 
with PDETER dependent 

Kendall's Tau-b 
Kendall's Tau-c 
Gamma 
Somers's D : 

symmetric 
with SCHOOL dependent 
with PDETER dependent 

Pearson's R 
Spearman Correlation 
Eta: 

with SCHOOL dependent 
with PDETER dependent 

.37195 

.37195 
34862 

20482 
20588 
20408 

.13835 
.07190 

.08259 

.10643 

.06747 
-.34075 
-.38584 
-.55844 

-.33725 
-.29510 
-.39346 
-.35403 
-.36041 

.37195 

.35403 

.00423 "1 
.00423 "1 
.00423 "1 

.11844 1.61109 

.18347 1.00639 

.11224 1.64993 

.07330 .00454 "2 

.03956 .00367 "2 

.04599 1.79391 .00319 "3 

.05921 
.03762 

1.79391 
1.79391 

00319 "3 
.00319 "3 

.09591 -3.53772 

.10906 -3.53772 
.13738 -3.53772 

.09492 -3.53772 

.08352 -3.53772 

.11052 -3.53772 

.10173 -3.32169 .00069 

.10141 -3.39041 .00055 

"1 Pearson chi-square probability
 
"2 Based on chi-square approximation
 
"3 Likelihood ratio chi-square probability
 

copy of the measures of association produced by SPSSX for the example in Table 
10.1. 

If the data are generated from a single sample, then the proper test is one of 
independence and a measure of association is the mean square contingency 
coefficient. Designated as q.2, its sample estimate is calcUlated as 

f J 

'f>2 = 2: 2: JL - 1. 
(8)1=1 j~1 f,. - I j 

It can be shown that the maximum value that <f>2 can attain is <f>~", 
the

minimum of (I - I) or (J - I). To correct for this compute 
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<f>2' = <1>2 (9)
<1>~", ' 

which is referred to as Cramer's measure of association (Cramer, 1946). 
If both variables are ordered, one is presented with a variety of choices 

including the standard product-moment correlation coefficient (Kendall & Stuart, 
1969), tau-a and tau-b (Kendall, 1970; Kendall & Stuart, 1979), Goodman and 
Kruskal's tau, and gamma (Goodman & Kruskal, 1954, 1959, 1963). Com­
parison of these methods is given by Gans and Robertson (1981) and Cesa 
(1982). Tau is generally recommended as it approaches the normal distribution 
faster than Spearman's rho (Kendall, 1970) and is not inflated by the exclusion of 
tied values as gamma is. 

When the frequencies of the K groups are cross-classified by a dependent 
variable that is ordered, Serlin, Carr, and Marascuilo (1982) proposed a measure 
that is the ratio of the calculated test statistic to the maximum the statistic can 
reach. Their measure ranges from zero to unity. and it is interpreted just as T]2 is 
in the parametric analysis of variance (ANOYA). For Table 10.2. T] = .37. 

In the case of a 2 x 2 table. the well-known measure of association based on 
X2 is <1>2 and is calculated as 

<1>2 = X
2 

(10)
N' 

If Kendall's tau is calculated for the same table, it will be seen that phi = tau. 
An alternative to the use of phi is to employ the odds ratio (Fienberg, 1980). 

For a 2 x 2 table the categories defining the table may be labeled as A, not-A, B. 
and not-B. The probability of observing B, given the presence of A, can be 
expressed as 

P(BIA) 
( I I)

P(BIA)' 

Alternatively. the probability of observing B, given the absence of A, is 

PCB IA) 
(12)

P(l~IA)' 

A simple measure of association, apparently first proposed by Cornfield (1951 ). 
is the ratio of these two odds. In the sample, the measure is calculated as 

- illi22 (13 )
'I = ild21 

with a standard error estimated as 

- I...!..+...!..+...!..+...!.. (14 ) 
SE'Y - -y ill i22 il 2 i21 
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A useful discussion of this measure. which is widely used in hio-medical 
research, including additional references may be found in Fleiss (1973). The 
choice between the two coefficients, tau and phi, for the 2 x 2 table is not clear­
cut, and the reader is referred to Fleiss for further discussion. 

Analysis of Ordered Categories 

In spite of its usefulness, there are conditions under which the use of Pearson's 
chi-square, although appropriate, is not the optimum procedure. Such a situation 
occurs when the categories fonning a table have a natural ordering. The value of 
the statistic expressed in Equation 5 will not be altered if the rows and/or 
columns in a table are pennuted. However, if ordering of the rows or columns 
exists. their order cannot meaningfully be changed. This is infonnation to which 
chi-square is not sensitive. Instead. the researcher may choose among several 
alternatives. 

If both rows and columns contain a natural ordering. two methods are avail­
able. The first is a procedure taken from Maxwell (1961) as modified by Mar­
ascuilo and McSweeny (1977). It is used to test for a monotonic trend in the 
responses across categories. 

The first step is to quantify the categories using any arbitrary numbering 
system. As the method is independent of the numbers chosen. both Maxwell and 
Marascuilo and McSweeny recommended numbers that simplify the calculations 
such as the linear coefficients in a table of orthogonal polynomials. These coeffi­
cients are then applied to the marginal frequencies, the Yi . and Y. j , to produce the 
sums and sums of squares for use in calculating a slope coefficient by the usual 
equation: 

- _ N(IIYiYj - (IYi)(Dj)) 
(15)

(3 - N(Ut) - (UJ) 

Under the assumption that B = 0, the standard error of (3 is calculated as 

52 
5E = l'J (16)

P N - 1(52 )'
YJ 

Then the hypothesis of no linear trend may be tested by 

(32
X2 == --.- ~ X2 ( 17)5£2(32 v- I' 

A second procedure for examining tables with ordered marginal categories 
involves the use of Kendall's (1970) rank tau. corrected for ties. If the observed 
tau is statistically significant, the hypothesis of no association is rejected. In 

addition, the statistic itself is a measure of association or array of the data, as 
discussed in the previous section. 
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When one of the two variables defining a table is ordered, Kruskal and 
Wallis's (\952) nonparametric one-way analysis-of-variance procedure may be 

utilized to test for equality of distributions. This procedure is described by 
Marascuilo and Dagenais (1982). Consider the case of an 1 x J contingency 
table, where the dimension 1 is defined by mutually exclusive ordered categories. 
The Kruskal-Wallis statistic is based on a simultaneous comparison of the sum 
of the ranks for the K groups. To apply the statistic in the case of an 1 x K table, 
the frequencies within a category along dimension 1 are considered to be tied 
and, therefore. are assigned a midrank value. One then sums the ranks across I. 
within Group k, to obtain the summed ranks used in calculating the statistic. 

Log- arW Logit-Linear Models 

This versatile statistic of Pearson's can also be extended to three-dimensional 
tables as well (Agresti, 1990; Fienberg, 1980). Given the expected frequencies 
derived from a model, one computes the statistic as shown in Equation I. The 
degrees of freedom are computed as the number of cells in the table minus the 
number of parameters fitted. As Fienberg (p. 40) noted, Equation I is 
asymptotically equivalent to G2 which is - 2 times the log of the likelihood ratio 
statistic. The choice between these two statistics IS discussed in the next section. 

The derivation of the expected values in multidimensional tables are, of 
course, at the heart of log-linear and logit-liner models. Many articles and texts 
are now available for these procedures, including the works of Bishop et al. 
(1975), Goodman (1978), Habennan (1978), and Fienherg (1980). These pro­
cedures are implemented through several packaged computer programs including 
LOGLINEAR in SPSSX, SAS CATMOD, Goodman's ECTA, BMDP 4F, 
Neider's GUM, and Bock's Multiqual, which are familiar to many researchers. 

Although most applicable for analyzing multidimensional tables, it should be 

pointed out that these models can be used on two-dimensional tables as well. It is 
likely that log-linear models will eventually supersede the use of Pearson's chi­
square in the future because of their similarity to ANaYA procedures and their 
extension to higher-order tables. Discussion of this methodology. however. is 

beyond the scope of this chapter. 

Log-Likelihood Ratio 

An alternative procedure to calculating Pearson's chi-square to test a hypothesis 
concerning a multinomial is the use of the likelihood ratio statistic. It is a 

maximum likelihood estimate labeled G2 and defined as 

I J I 
j ( \8)G2 2 2.: 2.: fij loge EU ) . 

(=, j= I J 
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In their text on discrete multivariate analysis, Bishop et al. (I975) used log-linear 
models, as opposed to additive models, for contingency table analysis. As a 
summary statistic they stated a preference for maximum likelihood estimators 
(MLEs) on theoretical grounds. Additionally, practical reasons for the use of this 
procedure were given: 

I.	 Ease of computation for linear models. 

2.	 MLEs satisfy certain marginal constraints they called intuitive. 

3.	 "The method of maximum likelihood can be applied directly [0 multi­
nomial data with several observed cell values of zero. and almost always 
produces non-zero estimates for such cells (an extremely valuable property 
in small samples)" (p. 58). 

They further stated, "MLEs necessarily give minimum values of Gl, it is 
appropriate to use G2 as a summary statistic. . although the reader will ob­
serve that, in the samples where we compute both Xl and G2, the difference in 
numerical value of the two is seldom large enough to be of practical importance" 
(p.	 126). 

There are cases where the likelihood-ratio statistic may be preferred over chi­
square. Such may occur when some expected values are quite small or when the 
contingency table contains a structural zero. 

Several investigators have compared ",-7 and G2 in a variety of research situa­
tions. Chapman (1976) provided an overview of much of this research, including 
the work of Neyman and Pearson (1931), Cochran (1936), Fisher ( 1950), Good 
e[ al. (1970). and West and Kempthorne (I 972). From these comparisons, neither 
of the two procedures emerges a clear favorite. When one method is better in 
some respect than the other, it seems to result from a particular configuration of 
sample size, number of categories, expected values. and the alternative hypoth­
esis. An exception to the general equivalence of these two statistics can be found 
in the literature on partitioning of contingency tables, which is discussed follow­
ing the next section. 

Comparison of Two Independent Chi-Squares 

It is conceivable that situations may occur in which one may want to test the 
equality of two independent chi-square values. One direct method to accomplish 
this would be to compute the same measure of association for each table and 
visually compare their values. If a test is required, Knepp and Entwisle (1969) 
presented, in tabular form, the I% and 5% critical values for this comparison for 
degrees of freedom that equal I to 100. They also provided a normal approxima­
tion calculated as 
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~ (X~) - ~ (X~) 
Z = V;; ( 19) 

where X21 and X22 are two independent sample chi-square values, each with v 
degrees of freedom. The statistic Z is approximately distributed as a unit nonnal 
variable. 

D'Agostino and Rosman (I 971) offered another simple nonnal approximation 
for comparing two chi-square value in the fonn of 

~-V~ (20) 

~ 1- J. . 
4v 

This approximation was tested by Monte Carlo methods and found to be quite 
good for cases with degrees of freedom greater than two. With one degree of 
freedom the researcher must use Knepp and Entwistle's tabled values. which are 
2: 19 for a = .05 and 3.66 for a = .01. D'Agostino and Rosman also noted that 
for drs greater than 20. the denominator in Equation 20 makes little difference 
and 

VX~ - VX~	 (21 ) 

may be used in place of Equation 19. 
The same question that produced the data in Table 10.1 was asked of 68 

teachers from two groups in a different school district. Pearson's chi-square for 
this second sample equaled 5. 106 compared to a value of 10.929 in Table 10.1. 
With only two degrees of freedom we can use Equation 19 to obtain a z statistic 
of 2.05, leading us to conclude that the two sample statistics are different from 
each other. In other words, the lack of homogeneity between groups is not the 
same for our two samples. 

As noted by Serlin (personal communication, 1990) one should be able to 
extend this same approach to tables with different degrees of freedom. Using the 
relatively accurate cube-root approximation one should be able to compute a z 
statistic as 

VfJ-~
VI V2Z=	 (22) 

~ 9~1 + 9~2 
Although this approximation is quite good for even two or three degrees of 
freedom, this is still a large-sample approximation. 

One should note that these procedures should be used with extreme caution 
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for at least two reasons. It is possible for very different configurations within two 
tables to produce the same chi-s<Juare values. It is also possible to obtain different 
Chi-square values from tables with identical intemal pattems if the sample sizes 
differ between tables. 

Partitioning 

At about the same time that Lewis and Burke were writing, the first extensive 
work on the partitioning of an I x J contingency table into components was 
being conducted by Lancaster (1949, 1950, 195/), who demonstrated that a 
general term of a multinomial can he reduced to a series of binomial telTI1s. each 
with one degree of freedom. This work along with the work of Irv,'in (1949), 
Kimbal (1954), Kastenbaun (1960), Castellan (1965), and Bresnahan and 
Shapiro (J 966) allows one to decompose a contingency table into a set of smaller 
tables whose individual chi-square statistics sum to the total chi-square. 

The partitioning of contingency tables is not often seen in the literature. 
however. for two primary reasons. First, log-linear analysis, the examination of 
residuals, and the use of contrasts pelTI1it one to examine the sources of variation 
as easily. Second, Shaffer (1973) demonstrated that to test one partition for 
statistical significance is actually to test the hypothesis that no partition is signifi­
cant against the altemative that one is significant and the remaining partitions are 
nol. The interested reader is referred to the references cited earlier. 

Several procedures that supplement or provide an altemative to panitioning 
are available. Graphical analysis is discussed and exemplified by Boardman 
(1977), Cohen (1980), Cm and Laugh (1967), Fienberg (1969). and Snee (1974). 
One version of graphical analysis. based on Brown's work (1974, 1976), is 
implemented by BMDP's 2F procedure (Dixon. 1983). 

CONCLUSIONS 

Ninety years after its original development, Pearson's Chi-square statistic re­
mains a useful and powerful tool in our attempts to account for variation in data. 
Its ready availability makes for widespread use while research into its various 
properties and over its appropriate applications continues. In addition to remind­
ing the researcher to pay heed to all of the usual issues and wamings applicable to 
any inferential statistic, such as being aware of its assumptions and what precise 
hypothesis it tests, a few points bear repetition. 

Under certain conditions, expected cell frequencies less than five do not 
substantially alter the Type I error rate of the chi-square statistic. The decrease in 
power that accompanies these small expected values, though, should encourage 
one to use large sample sizes. 

The debate over the use of the Yates correction for continuity is unresolved. 
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There is general agreement, however, that the correction often results in an 
overly conservative test when the margins in a table are generated from random 
variables. 

There are a number of supplementary and alternative approaches to the use of 
Pearson's chi-square that the researcher should know. Often the questions one 
asks of data may be more directly or efficiently answered by planned contrasts of 
proportions, partitioning of the total chi-square, or the use of log-linear models 
A useful paper on this subject was written by Cochran (1954). He presented 
methods for dealing with some specific contingency table designs and probability 
distributions. [n addition to the previously mentioned recommendations regard­
ing minimum expected values. he discussed testing goodness-of-fit hypotheses in 
different distributions, degrees of freedom in 2 x N tables, and combining 2 x :2 
tables. 
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